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of the boundary) of the functional of attached mass in the z1 direction, provided that the 

total area of the system of bodies and their attached mass in the zp direction are given. 
The proof of condition (20) shows that the inequality becomes an equality on bodies of 

such form, that aylazlazj are constant in S+, or by virtue of the continuous character of 
X and its first derivatives, when the following relations hold on the boundary: 

q (9* +n* 28) = Jzl* + li; z = (Zlr 2,~ 21) E Ti 

acplan = z&n', a = (al, k=, na), f = t, 2, . . __ n; 

which are also generated by the inverse problem of the theory of elasticity dealing with the 
optimization of the state of stress of the homogeneous, isotropic, linearly elastic space s- 
with cavities loaded at infinity along the axes by the forces (II (I=l, 2.3). By the optimiza- 
tion we mean the control of the form of the boundary resulting in attainment of the least 
possible local Mises criterion, i.e. the maximum of the second invariant deviator of the stress 
tensor in s-. The functions ax/az have the meaning of elastic displacements of the points of 
the medium along the axes 2~) = (Q- 2qt)/qf, Q = ql+ qa+qa, and the constants CI remain undetermined. 
For such a boundary M and A are reduced simultaneously to diagonal form. 

Unlike the plane case /5/, the actual determination of the boundary at m>l is very 
complicated. In the axisymmetric variant Q = QI,~ n= p& we propose in /?/ a non-linear integral 
equation in coordinates of the points lying on the meridian section of the boundary, as func- 
tions of the arc lengths, and gives the results of its numerical solution. 
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ON CERTAIN FEATURES OF THE FLOWS OF 
VISCOUS COMPRESSIBLE FLUIDS IN CYLINDRICAL PIPES* 

V.N. BELONENKO and O.YU. DINARIEV 

The flow of a viscous compressible fluid in cylindrical pipes when there 
is volume viscosity /l/ is studied. The process is assumed to be baro- 
tropic, as is the case when, for example, heat emission can be neglected 
or when the fluid has high thermal conductivity. The problem of the 
correct boundary conditions for the system of defining equations is 
discussed. The problem of the flow of fluid with Tate's equation of state 
is solved using the method of separation of variables. Proofs of the 
existence and uniqueness of the solutions of the ordinary differential 
equations obtianed are given. The asymptotic behaviour of the velocity 
as the volume viscosity increased is studied. The coefficients of the 
volume and shear viscosity are assumed to be constant everywhere. 

1. We shall consider, side by side, the plane and the three-dimensional problem of a 
one-dimensional steady flow in a cylindrical region enclosed between fixed walls. The defin- 
ing system of equations (Navier-Stokes, continuity and state) is reduced to 

X = I-P i cu A = + qs (a2 + Aj) u 
:“: grad, [-p + &:I 

(1.1) 

(PU).* = 0, P = P w: 6 = 9v + '/a% 

*Prikl.Matem,l4ekhan,49,1,166-170,1905 
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Rere u is the flow velocity along the Ot axis, and nV and I)$ are the volume and shear 
viscosity coefficients. The parameter j takes two values, 1 and 2, and these correspond to 
flow between planes ad flow in a pipe, For j= t A1r $,~,~a&= a, and all functions are 
assumed smooth in the closed region 

G, = i(rs Y) E Ra 1.z = PA Ll, B E! I-a, 41) 
up to its boundary. We impose the condition of adhesion u~~_~~==o on the velocity. 

For i=2A,= (au2 4 &z), grad,= (a,,&) and all functions in the region 

C, = f(+, Y, 2) = RS I= = lo, -U, (Y, I) = W 
are assumed smooth up to its boundary: L&CR* is an arbitrary plane region with a piecewise 
smooth boundary, and the boundary condition ~~~~~~~~~~~ ==O is imposed on the velocity. 

Let us find the function h=--p+ gu,&. We see from (1.1) that h depends only on x and 
is equal to the pressure with its sign changed at points lying on the fixed flow boundaries 
with abscissa x. 

Using the function h we can rewrite (1.1) thus 

Pux,~ = h,, -1 qs (d,’ 7 A,) u 

P,X = 5-l (h - PI; (PU),, = 0, p = p fpf 
(1.2) 

Specifying the external pressure drop as natural, given e.g. by the conditions PI,=0 = 

~~,p\~_~= p, (po>pl), leads to a contradiction as shown by the following lemma. 

LWllttk%. In the case of a viscous compressible fluid whose flow is governed by the equa- 
tions (1.2) and conditions of adhesion, the relation p&= po= const leads to rr=O. 

Proof. Since u vanishes on the walls, we have 

h (0) + p &, = h (0) T PO =;q&,O = o 

and this yields u,,I,+= C', A, u,&+ = 0. 

Differentiation with respect to x yields the following relations from (1.2): 

(1.3) 

We shall consider all term of (1.3) at Z=O, denoting them by the superscript o Then 

we have from the first equation of (1.3) 

p”uou,Lv C=h ,.+= -i- %U,,,P 
Since U,XX and u,x*.x vanish at the walls, we have h,,,' = 0 and 

p%"u*xxc = 7)&,XXl (1.4) 

We further have 

The last equation yields the following relation for the points at which ~p+() (and hence 
for the whole set (I= 0) fi GA: 

p" (u")~ htx,’ 5 = --_~,~~~~h.,‘q- * 

But then h+' = 0, lt,X5Lo = 0. 
Thus when z=o obeys the j-dimensional Laplace equation in some bounded region with 

zero boundary conditions. This yields il IX+ 3 0, since (pu),, = 0,we have II= o in the whole 

set 4. 
The lemma show that in the case of barotropic, one-dimensional steady motions of a viscous 

compressible fluid between fixed walls, neither the pressure, nor the density can be assumed 
constant across the flow. Therefore we define the pressure drop by the following conditions: 

h(O)= -&%I, k(L) = -PI (1.5) 

2, We take, as the equation of state, the relation 

p = PO + A ii - Pww 

describing the behaviour of a wide class of liquids /2/. 
Then in system (1.2) we can separate the variables 

,, = e"Xu, P = e=R, h = A<"' - A - pO 
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where u and R are independent of x and obet the equations 

vRU' = AV + ?a (V’ $ Aj) Ut LvU = A (4 - &JR) (2.1) 

The parameter v is found from condition (1.5) 

v=L-'ln(i+Ap/A) 

We can eliminate R from (2.1), thus obtaining a non-linear differential equation for V. 

It is best to write CT= .4~-1p~ and consider the problem for the function 9 

111 (Aj + V’) up - Ap,b-'e'(i - up)-' f 6%” = 0 (2.2) 

o IyE*. = 0 (i = 0; cp ([,o, = 0 0' = 2) 

We shall assume for simplicity that in the three-dimensional case the fluid moves in a 
circular pipe of radius a, and the flow is axisymmetric. This means that o = cp@), A$ = r-V,ra,, 
r=V/yP 

Let us now change to a system of units in which a=i,nr= I,&,= i. Then problem (2.2) 
will transform to 

AI'p = F(o)= AC-'9" (i - cp)-' - 6va - V*'P (2.3) 
cp (fi) = 0 0' = 1); cp (1) = 0, cp' (0) = 0 0' = 2). 

Theorem. Problem (2.3) has a unique solution, cp is a convex function and its maximum 
value satisfies the inequality 

i > Pmar ‘, i - A [5 (cv? - 2j)]-1 (2.4) 

provided that p>~j. 

Proof. Equation F(q)= 0 has two roots: ‘p, and er, and (Pn<O<%<j. At large t 

'PI = i + 0 (P), ez = --6+ 0 (1) 

Fig.1 shows a graph of F = F (cp) . 
Let j=l, and let us inspect the plane pattern of Eq.(2.3) in the region q = 10, f [ 

(Fig.2). We have a saddle-type singularity at the point M= (VI, 0). Two separatrices exist, 
passing through M and intersecting the 09' axis. The curves, together with the 0~' axis, 
bound the region of possible flows. The trajectories filling this region represent the 
solutions of (2.3). Every trajectory is characterized by the abscissa of its intersection 
with the do axis where the function o = o(y) attains its maximum value 'pm,, = (p,,,. Since 

to satisfy the boundary conditions we must require that 

(2.5) 

Let us study the behaviour of the function W,= W,(cp,) in the interval [O,o,). To do 
this we introduce the notation 

Let g= g(~) be the inverse of H= H(T). Then 

*Vl 
1~~ (e,) = 5 [f o 4 (H)]-l(Hm - H)-‘:‘dlI _= 2+ o :: (H,<)J-’ (1 - Q-"'H>dE 

0 0 

It is clear that W,(O)= 0 and W,(q,)-+ 00, if o,,,+ol. 
We shall show that dW1 (rq,,J/dq,,,>O. To do this, it is sufficient to note that 

d [(f D g (H,,,Q)-lH~lIdH, = 2-‘H;“fs (f - 2Hj’) > 0 

Indeed, the function Q(H)=(fo g (H)p- 2Hj’og(H) has the obvious properties Q(O)>0 and 
Q' (H) = -2f’Hr c g (H) > 0, and this implies that Q(H)>• in the interval in question. 

Thus we have shown that w,(q,) increases monotonically in the interval [O,cpl[ from 0 
to +=* Therefore Eq.(2.4) has a unique solution and this implies the existence and unique- 
ness of the solution of problem (2.3) for j = 1. 

Let us consider the case j=2. Introducing a new function q=P and a new independent 
parameter z=lnr, we can rewrite the equation (2.3) in the form of an autonomous system (a 
dot denotes differentiation with respect to T) 
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Fig.1 Fig.2 

Fig.3 Fig.4 

Q' = 2% q = v, U' = gF(v) (2.6) 

The solution of problem (2.3) is represented by a trajectory of the system (2.6) lying 
in the set (fq,o.~)\ ~P[[O,&) and passing through the points A, = (O,cp,,, 0) and B, = (1, 0, 6 
System (2.6) has a singular curve, namely the 0% axis. The behaviour of the trajectories 
of the system near this curve at ~,,,~[[0,8~1 is shown qualitatively in theformof a projection 
onto the OLD plane in Fig.3. We see that a unique trajectory CVm, exists emerging from the 
point .4 = (0, qrn, o) into the physical region {g>O,o<O). 

Let Q = q(qrn,T), m'= q (k~). r = r(rp,, T) be the equation of this trajectory. Eliminating 
z, we can obtain the functions y= 4(%, CF) and U~C(Vm.(F). We have the relation 

Let us introduce the function II'!, 1~") = 4 (om.0). The equation 

wz k&n) = 1 (2.8) 

determines emo and hence the solution of problem (2.3). Clearly, w,(O)- 0. 
Further, using relation (2.7) we can show by means of lengthy although simple manipula- 

tions, that Jq(~~,~)~~~~ > o(q EZ lo,rp,l) and hence ~~*(~~)l~~~>O. The proof of this fact is 
basically analogous to the proof of the inequality ~w~(I&/&,,>~J and is therefore not given 
here. It is also clear that W,(%,,)- -i-m as mm-m, (otherwise making grn in (2.7) tend 

to %I would produce a contradiction). Therefore, Eq.(2.7) has a unique solution and this 
implies the existence and uniqueness of the solution of problem (2.3) for i=2. 

We note that 
I. 

9 (Y) = - (1 -Y&W (T (CD-~ (1 - 4) F(Q (E))d4 (i = I) 
0 Y 
t 1 

v(r) == - In -+- 1 <dSf (cp (i))- 1 Ed;r(y ($))lu + ii = 2) 
0 7 
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Estimatingthetermsofthe identities with the help of the inequalities O~~<%aa<i~~2 

(i -- q)-l< (1 - pm&l , we obtain the inequality (2.4). 
Thus we have shown that in case of the motion of a viscous compressible fluid with the 

Tate equation of state, a convex velocity profile forms at high densities between the plates 
or in a pipe of circular cross-section, whose amplitude increases exponentially in the down- 

stream direction. The velocity has the form u =jq, where 7 = 4.&(f + AP/A)x/L [(,,v + I/~,,~) la (1 + 

AplA)]-1, and 
e = I (v/a) (j = i), 'p = cp (r/a) (j = 2) 

is a dimensionless function taking values in the interval (0.~. 
A quantitative estimate-of-the influence of the volume 

viscosity on the fluid flow was obtained by solving (2.3) 
numerically for the case when j= I, Apoa’rls-” = I,LzL-~ In (1 + ApiA) = 
0.04 , and for various values of n&Is. The results obtained 

were used to draw a graph of ,j = (qv/ss + l/s)-l'p,, versus lgn&h Fig.4. 
The function differs from the maximum velocity by a dimensional 
multiplier independent of t)". In addition, graphs were drawn 
of the function o (U/O), characterizing the flow velocity profile 
for various values of Q/Q (Fig.5) where the curves 1, 2, 3 
correspond to the values ~/rk = 100, 400, 1000. Figs.4 and 5 
illustrate the assertion proved in Sect.2 that then the volume 
viscosity increases and other parameters are kept constant, 

ornan tends to unity and the relation u,.,ri is satisfied 

asymptotically for the maximum velocity of flow. 

Fig.5 
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SHOCK WAVES IN AN ISOTHERMAL GAS IN THE PRESENCE OF REACTION FORCES* 

YU.N. GORDEYEV, N.A. KUDRYASHOV and V.V. MURZENKO 

One-dimensional isothermal gas flow taking into account reaction forces 
which depend linearly on the velocity is considered. Problems of gas flow 
with and without convective terms are formulated. Their analytic and 
numerical solutions are obtained, and the possibility of obtaining shock 
waves reflected within the medium is indicated. 

The flows in question arise when a gas is filtered through porous media, during its 
passage along pipes and major cracks, when porous bodies move in gaseous media, and in a 
number of technological processes /l, 2/. A system of equations describing the motion of a 
gas taking frictional forces into account if given in /3, 4/. 
of quasilinear equations were studied in /5/. 

The general types of systems 

1. Formulation of the problem. A system of equations describing a one-dimensional 
isothermal gas flow with resistance forces linear with respect to the velocities, has the form 

(1.1) 

P = c”P 
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